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Introduction & Overview

Challenge Goal

o Predict{2,, 5¢and uncertainties o, , o5 from
noisy weak-lensing convergence maps

My Approach (8th place):

1. Denoising U-Net — denoise the convergence
maps

2. Parameter Estimation Ensemble —
ensemble of CNNs to predict {2, and Sq

3. MCMC — estimate uncertainties
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Denoising U-Net

X + e
o Standard U-Net with encoder-
decoder + skip connections
* |Input = noisy map X + €, Output DeJCIiilsitng
A -INE

= denoised map X

. Loss: MSE || X — X| \%




Parameter Estimation Network

 Extract 88x88 patches from denoised convergence map
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Parameter Estimation Network Patch Augmentations

* Horizontal / vertical / diagonal .

Vertical Flip Random Masking

o ..

5

 Patch-level data augmentation:




Parameter Estimation Network

 CNN + attention + mean pooling
* | ocal: patch embeddings

* Global: aggregated map
features

YNN NN
+ MLP - QM §7

e Loss: MSE
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Ensembling

 Ensemble with different
pretrained CNN backbones
(RegNet and EfficientNet
variants)
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MCMC Posterior Estimation

« Use (QiNS, S’?NS) as summary
statistics

* |ndependent priors for each
parameter

e Gamma for €2,

» Beta for S

e Gaussian likelihood

. (AMCMC SMCMC ~ A
. Output: (€2, Y , 00 » 658)
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Qp,: histogram vs fitted Gamma
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Results

Comparisons:
e With vs. without denoising Model Without |  With
Denoising | Denoising
PS Ensemble VS. Slngle model Ensemble 10.779 11.0551
efficientnet_b?2 10.401 10.801
efficientnet_b3 10.360 10.813

regnetz_040.ra3_in1k 10.455 10.890

regnetv_040.ra3_in1k 10.492 10.939

regnety_040.ra3_in1k 10.466 10.891

Model performance on the holdout dataset



Conclusion

* Denoising and ensembling significantly improve performance
* Jop performance likely requires stronger foundational methods

 May provide further gains when combined with stronger models ?
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Thank you!



