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Cosmology 101: The Invisible Universe

What is Weak Gravitational Lensing?

Most matter in the universe is Dark Matter (invisible).

According to Einstein (General Relativity), gravity bends
light.

As light from distant galaxies travels to us, it passes
through Dark Matter structures.

Result: The galaxies appear slightly distorted (sheared).

The Goal

By analyzing these distortions (Convergence Maps), we can
”weigh” the universe and map the invisible dark matter.

A

Earth

Dark Matter (Lens)

Galaxy

We observe distorted shapes,

not the true galaxy position.
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The Machine Learning Task: Input to Output

We treat Cosmology as an Image Regression problem with Uncertainty.

Input Map
1424× 176 px

(Simulated HSC Survey)

Represents Matter Density

Deep Learning Model
(DenseNet)

Cosmological Parameters

• Ωm: Total Matter Density
(How heavy is the universe?)

• S8: Fluctuation Amplitude
(How ”clumpy” is it?)

Pixel Data Predictions

(µ, σ)

*Model must predict σ (uncer-
tainty) to handle simulation errors.
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The Core Challenge: Simulation-to-Real Gap

The Problem
We train on Simulations, but test on data that mimics
Reality.

Sources of Mismatch (Systematics):

1 Baryonic Physics: Gas interactions, supernovae
feedback.

2 Redshift Uncertainty: Errors in measuring galaxy
distances.

3 Intrinsic Alignment: Galaxies physically aligning
with each other.

The Data

Training Set: ∼ 26, 000 maps (101
cosmologies).

Requirement: The model must implicitly
marginalize over these nuisance
parameters.
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The Journey I: From Statistics to Deep Learning

My approach evolved through rigorous experimentation, moving from statistical baselines to advanced
computer vision architectures.

Phase 1: Statistical Baseline (Score: 4.54)
Used Power Spectrum (1D summary statistic) + MCMC Emulator. Limitation: Discarded
non-Gaussian information in the maps.

Simple CNN
(Score: 8.46)
5-Fold Ensemble

Adaptive Pooling
(Score: 9.02)

Reduced Parameters

ResNet Backbone
(Score: 9.82)

Residual Connections

Key Insight: Residual connections allowed the model to learn deeper features from the complex
cosmic web structure.
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The Journey II: Optimization & Final Solution

Once the architecture was stable, the focus shifted to Loss Engineering and maximizing Parameter
Efficiency.

1. Loss Engineering (Score: 11.48)

Problem: Standard Likelihood loss was unstable.
Solution: Decomposed loss into three tunable
terms (Uncertainty Penalty + Weighted MSE +
Pure MSE).

Impact: Gave precise control over the model’s
”laziness” (tendency to predict infinite
uncertainty).

2. Final: DenseNet (Score: 11.61)

Move: ResNet → DenseNet.

Why? Feature concatenation preserves low-level
lensing signals better than summation.
Efficiency: 766k → 472k parameters.
Result: Superior generalization.
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Data Pipeline: Bridging Simulation and Reality

1. Efficient Preprocessing

Memory Mapping: Converted 25,856 maps
to .mmap files with float16 precision.

Impact: Allowed rapid, out-of-core data
loading without crashing RAM.

Normalization: Statistics (mean/std)
computed on a random 5k subset to prevent
overflow.

2. Geometric Augmentation

Random Horizontal/Vertical Flips applied to
every sample.

Why? The Universe is isotropic; orientation
should not affect cosmological parameters.

3. Physics-Based Noise Injection (Crucial Step)

The Challenge: Training images are noiseless, but Test images emulate a real telescope (noisy).
The Solution: We inject Gaussian noise derived from the survey’s instrument parameters:

ng = 30.0 gal/arcmin2 | Pixel Scale = 2.0′

Result: The model learns to be robust against specific instrument noise.
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Architecture: Parameter-Efficient DenseNet

Input Map
1 x 1424 x 176

Initial Conv

Dense Block 1

Transition Layer 1

Dense Block 2

Transition Layer 2

Global Avg Pool

Unified Head

Output
[µΩm

, µS8
, σ2

Ωm
, σ2

S8
]

Architecture Details:

Input: Single channel (1424× 176).

Dense Blocks: Layers connect to all subsequent
layers.

Bottleneck: Adaptive Global Average Pooling
reduces spatial dims to 1× 1.

Output Head: A single MLP predicts both means
and log-variances.

Initialization Trick: The output bias for log(σ2) was
initialized to −5.0. This prevents the loss from exploding
at the start of training.
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Core Innovation: Tunable Three-Term Loss

Standard NLL is often unstable. I used a decomposed loss to balance Accuracy vs. Uncertainty:

L = λunc

∑
log(σ2)︸ ︷︷ ︸

1. Uncertainty Penalty

+λwMSE

∑ (y − µ)2

σ2︸ ︷︷ ︸
2. Weighted MSE

+λMSE

∑
(y − µ)2︸ ︷︷ ︸

3. Pure MSE (Anchor)

The Logic:

1 Uncertainty Penalty: Explicitly penalizes high uncertainty. Prevents the model from ”cheating”
by saying ”I don’t know” (σ → ∞) to everything.

2 Weighted MSE: The standard probabilistic error term.

3 Pure MSE Anchor: Ensures the mean prediction µ remains accurate even if the uncertainty
estimation is fluctuating.

Optimal Tuning: λunc = 2.0, λwMSE = 1.0, λMSE = 0.0
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Results & Ablation Study

Method Parameters Public Score

Power Spectrum (Baseline) N/A 4.54
CNN Ensemble 1.2M 8.46
ResNet Backbone 766k 11.48
DenseNet (Ours) 472k 11.61

Key Findings
1 Efficiency > Complexity: The smaller DenseNet generalized better.

2 Loss Decoupling: Controlling the log(σ2) weight was more effective than architectural changes for
calibration.

3 Physics Wins: Models trained with physics-based augmentation outperformed deeper models
without it.
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Scientific Impact: Towards LSST & Euclid

Why is this important for Physics?

1. Implicit Marginalization

Physicists usually have to mathematically
integrate over nuisance parameters.

Our DenseNet learns to be invariant to
systematics (baryons, IA) automatically.

2. Trustworthy AI

Future surveys (Rubin/LSST) will have
massive data volume.

We need models that provide calibrated
uncertainty.

The Takeaway

This approach demonstrates that we can use imperfect simulations to extract precise cosmological
parameters from real observations, provided the uncertainty is modeled correctly.

Shubhojit Naskar (IIT Delhi) NeurIPS 2025: Weak Lensing Challenge NeurIPS 2025 Workshop 11 / 12



Conclusion

Summary of Contribution:

1 Compact Architecture: DenseNet (472k params) prevents overfitting to
simulation quirks.

2 Physics-Informed Augmentation: Injected known Instrument Noise into clean
training data to match Test conditions.

3 Tunable Loss: Allows manual calibration of the Precision-Uncertainty trade-off.

Thank You! Questions?
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