

Cosmological Parameter Estimation via Parameter-Efficient DenseNet and Tunable Loss Function

Winning Solution: Phase 1 of FAIR Universe Weak Lensing ML Uncertainty Challenge

Shubhojit Naskar

Yardi School of Artificial Intelligence
Indian Institute of Technology (IIT) Delhi

aib242285@iitd.ac.in

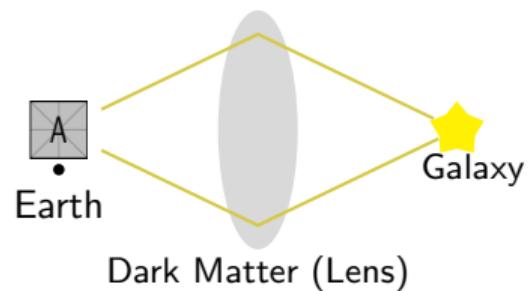
NeurIPS 2025 Workshop

Public Leaderboard Score: **11.61** (3rd Place)

Cosmology 101: The Invisible Universe

What is Weak Gravitational Lensing?

- Most matter in the universe is **Dark Matter** (invisible).
- According to Einstein (General Relativity), gravity bends light.
- As light from distant galaxies travels to us, it passes through Dark Matter structures.
- **Result:** The galaxies appear slightly distorted (sheared).



We observe distorted shapes,

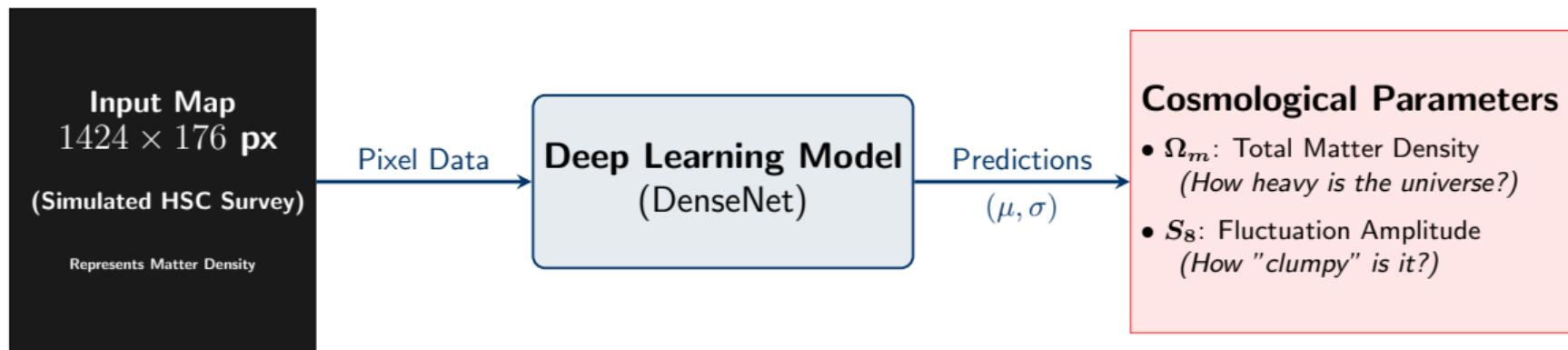
not the true galaxy position.

The Goal

By analyzing these distortions (Convergence Maps), we can "weigh" the universe and map the invisible dark matter.

The Machine Learning Task: Input to Output

We treat Cosmology as an Image Regression problem with Uncertainty.



*Model must predict σ (uncertainty) to handle simulation errors.

The Core Challenge: Simulation-to-Real Gap

The Problem

We train on **Simulations**, but test on data that mimics **Reality**.

Sources of Mismatch (Systematics):

- ① **Baryonic Physics:** Gas interactions, supernovae feedback.
- ② **Redshift Uncertainty:** Errors in measuring galaxy distances.
- ③ **Intrinsic Alignment:** Galaxies physically aligning with each other.

The Data

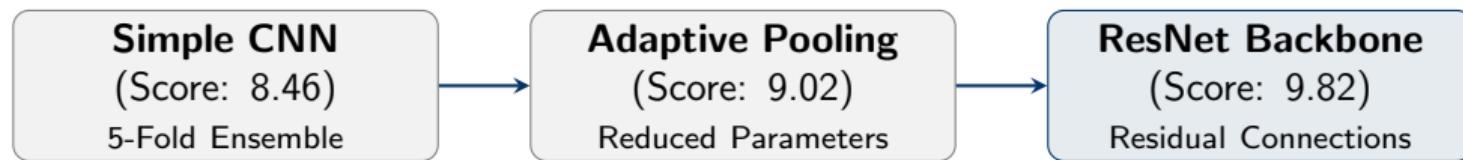
- **Training Set:** $\sim 26,000$ maps (101 cosmologies).
- **Requirement:** The model must implicitly marginalize over these nuisance parameters.

The Journey I: From Statistics to Deep Learning

My approach evolved through rigorous experimentation, moving from statistical baselines to advanced computer vision architectures.

- **Phase 1: Statistical Baseline (Score: 4.54)**

Used Power Spectrum (1D summary statistic) + MCMC Emulator. *Limitation: Discarded non-Gaussian information in the maps.*



- **Key Insight:** Residual connections allowed the model to learn deeper features from the complex cosmic web structure.

The Journey II: Optimization & Final Solution

Once the architecture was stable, the focus shifted to **Loss Engineering** and maximizing **Parameter Efficiency**.

1. Loss Engineering (Score: 11.48)

Problem: Standard Likelihood loss was unstable.

Solution: Decomposed loss into three tunable terms (Uncertainty Penalty + Weighted MSE + Pure MSE).

Impact: Gave precise control over the model's "laziness" (tendency to predict infinite uncertainty).

2. Final: DenseNet (Score: 11.61)

Move: ResNet \rightarrow DenseNet.

Why? Feature concatenation preserves low-level lensing signals better than summation.

Efficiency: 766k \rightarrow **472k parameters**.

Result: Superior generalization.

Data Pipeline: Bridging Simulation and Reality

1. Efficient Preprocessing

- **Memory Mapping:** Converted 25,856 maps to `.mmap` files with `float16` precision.
- **Impact:** Allowed rapid, out-of-core data loading without crashing RAM.
- **Normalization:** Statistics (mean/std) computed on a random 5k subset to prevent overflow.

2. Geometric Augmentation

- Random Horizontal/Vertical Flips applied to every sample.
- **Why?** The Universe is isotropic; orientation should not affect cosmological parameters.

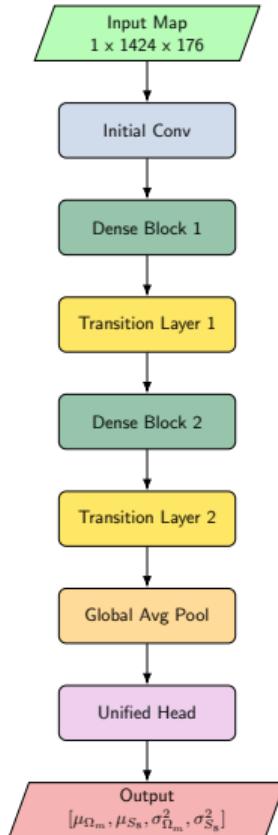
3. Physics-Based Noise Injection (Crucial Step)

The Challenge: Training images are *noiseless*, but Test images emulate a real telescope (noisy).

The Solution: We inject Gaussian noise derived from the survey's instrument parameters:

$$n_g = 30.0 \text{ gal/arcmin}^2 \quad | \quad \text{Pixel Scale} = 2.0'$$

Architecture: Parameter-Efficient DenseNet



Architecture Details:

- **Input:** Single channel (1424×176).
- **Dense Blocks:** Layers connect to all subsequent layers.
- **Bottleneck:** Adaptive Global Average Pooling reduces spatial dims to 1×1 .
- **Output Head:** A single MLP predicts both means and log-variances.

Initialization Trick: The output bias for $\log(\sigma^2)$ was initialized to -5.0 . This prevents the loss from exploding at the start of training.

Core Innovation: Tunable Three-Term Loss

Standard NLL is often unstable. I used a decomposed loss to balance Accuracy vs. Uncertainty:

$$\mathcal{L} = \underbrace{\lambda_{unc} \sum \log(\sigma^2)}_{1. \text{ Uncertainty Penalty}} + \underbrace{\lambda_{wMSE} \sum \frac{(y - \mu)^2}{\sigma^2}}_{2. \text{ Weighted MSE}} + \underbrace{\lambda_{MSE} \sum (y - \mu)^2}_{3. \text{ Pure MSE (Anchor)}}$$

The Logic:

- ① **Uncertainty Penalty:** Explicitly penalizes high uncertainty. Prevents the model from "cheating" by saying "I don't know" ($\sigma \rightarrow \infty$) to everything.
- ② **Weighted MSE:** The standard probabilistic error term.
- ③ **Pure MSE Anchor:** Ensures the mean prediction μ remains accurate even if the uncertainty estimation is fluctuating.

Optimal Tuning: $\lambda_{unc} = 2.0, \lambda_{wMSE} = 1.0, \lambda_{MSE} = 0.0$

Results & Ablation Study

Method	Parameters	Public Score
Power Spectrum (Baseline)	N/A	4.54
CNN Ensemble	1.2M	8.46
ResNet Backbone	766k	11.48
DenseNet (Ours)	472k	11.61

Key Findings

- ① **Efficiency > Complexity:** The smaller DenseNet generalized better.
- ② **Loss Decoupling:** Controlling the $\log(\sigma^2)$ weight was more effective than architectural changes for calibration.
- ③ **Physics Wins:** Models trained with physics-based augmentation outperformed deeper models without it.

Why is this important for Physics?

1. Implicit Marginalization

- Physicists usually have to mathematically integrate over nuisance parameters.
- Our DenseNet *learns* to be invariant to systematics (baryons, IA) automatically.

2. Trustworthy AI

- Future surveys (Rubin/LSST) will have massive data volume.
- We need models that provide **calibrated uncertainty**.

The Takeaway

This approach demonstrates that we can use imperfect simulations to extract precise cosmological parameters from real observations, provided the uncertainty is modeled correctly.

Summary of Contribution:

- ① **Compact Architecture:** DenseNet (472k params) prevents overfitting to simulation quirks.
- ② **Physics-Informed Augmentation:** Injected known Instrument Noise into clean training data to match Test conditions.
- ③ **Tunable Loss:** Allows manual calibration of the Precision-Uncertainty trade-off.

Thank You! Questions?